Вы находитесь здесь: Детский врач » Главная » Хирургия » Лазерные эндохирургические операции

Лазерные эндохирургические операции

    Вы студент медик? Интерн? Детский врач? Добавьте наш сайт в социальные сети!

Лазерные эндохирургические операцииВ основе лазерной хирургии лежит тепловое деструктивное воздействие лазерного излучения на биологические ткани.

Разработка методов передачи такого излучения через просвет эндоскопа сделала возможным использование лазеров и в эндоскопической хирургии. Можно с уверенностью сказать, что именно появление высокоэнергетических медицинских лазеров способствовало быстрому развитию эндотрахеальных и эндобронхиальных оперативных вмешательств в последние два десятилетия. В настоящее время в эндоскопической хирургии трахеи и бронхов используют несколько типов лазерных источников, которые различаются длиной волны, мощностью и режимами излучения. Для того чтобы сознательно выбрать нужный ему лазер, хирург-эндоскопист должен понимать основы устройства лазеров, а также знать преимущества и недостатки различных их типов.

Общие принципы устройства медицинских лазеров.

Термин «лазер» (laser) составлен из начальных букв пяти английских слов: Light Amplification by Stimulated Emission of Radiation, что означает усиление света с помощью стимулированной эмиссии излучения.

Лазер состоит из активной среды и точно расположенных относительно друг друга зеркал, образующих резонатор. Одно из зеркал является полностью отражающим, другое — частично пропускающим. Световое лазерное излучение формируется при многократном прохождении света через активную среду (в которой оно усиливается) между зеркалами.

Чтобы лазер стал лазерным скальпелем, необходимо подвести лазерное излучение к месту воздействия. В этом случае лазерное излучение поглощается в биологической ткани, в ограниченном объеме выделяется большое количество энергии, ткань нагревается. Основной характеристикой, определяющей скорость нагрева ткани, является плотность мощности излучения, т. е. мощность, приходящаяся на единицу площади. Чтобы сфокусировать лазерное излучение на ткани, проще всего поставить на выходе лазера линзу так, чтобы излучение концентрировалось на зоне воздействия. Это происходит при соединении лазера с операционным микроскопом. Однако такой способ наведения лазерного излучения не всегда удобен. Часто бывает затруднительно расположить рядом громоздкий излучатель и оперируемого. В этом случае транспортировку лазерного луча осуществляют внутри системы полых трубок, которые сопряжены и оптически согласованы между собой с помощью зеркально-шарнирных сочленений. Лазерный луч проходит внутри трубок, не касаясь их стенок. На дистальном конце такого манипулятора размещается оптическая линза, которая фокусирует лазерное излучение в пятно с малым диаметром (обычно 0,1—0,2 мм), что обеспечивает высокие плотности мощности света на объекте. Более удобной является транспортировка лазерного излучения по гибким волоконным световодам.

Оптический световод состоит из сердцевины и отражающей оболочки, выполненной из материала с более низким показателем преломления, чем у сердцевины. В обычных световодах для хирургических лазеров в качестве сердцевины используется высококачественный чистый кварц, отражающая оболочка может быть выполнена из легированного кварца или полимера. При использовании световодов с некоторыми видами лазерного излучения, которые сильно поглощаются в кварце, приходится применять для сердцевины специальные материалы, например сапфир, что резко увеличивает стоимость световодов. Сверху отражающей оболочки наносят защитную оболочку из полимера. В некоторых случаях в качестве световодов используют тонкие полые трубочки со стенками из отражающего материала. Такое волокно может быть использовано для доставки излучения к месту воздействия. Для этого необходимо с применением линзы ввести излучение во входной торец гибкого волоконного световода, с помощью которого излучение подводят к зоне воздействия.

Общие принципы воздействия лазерного излучения на биологические ткани. Эффективность лазерной хирургии определяется преобразованием энергии лазерного излучения в тепло на поверхности или в глубине ткани. Характер этого преобразования зависит не столько от физических параметров лазерного пучка, сколько (и прежде всего) от физических и морфологических свойств ткани. Именно взаимодействие свет — ткань является ключевым моментом в понимании основ лазерной медицины, в частности лазерной хирургии. Соотношение характеристик ткани и параметров лазера определяет выбор типа лазера и достигаемый тепловой, а следовательно, и хирургический эффект. При этом параметры ткани в таком выборе являются определяющими.

Многообразие структур биологических тканей определяет разный характер прохождения света через них, но основные закономерности сохраняются. Большинство тканей является для света рассеивающей средой с сильным поглощением. Такие среды часто называют мутными. При прохождении лазерного излучения через ткань наблюдается ослабление его интенсивности, которое определяется коэффициентом экстинкции (от лат. extinctio — гашение) \хг В свою очередь щ = ца + \xs, где ца и- ц5 — коэффициенты поглощения (абсорбции) и рассеивания. «Поглотителями» света в мягких тканях являются природные эндохромофоры, а «рассеивателями» — клетки ткани и их структурные (морфологические) особенности.

Преобразование света в тепло осуществляется на природных эндохромофорах — веществах, которые находятся в тканях. Типов хромофоров достаточно велико. Однако хромофоры, которые играют важную роль в лазерной хирургии, хорошо известны: вода, компоненты крови, меланин и, реже, протеин, который имеет большое значение в лазерной офтальмологической хирургии. При поглощении света на хромофорах происходит преобразование света, за счет чего ослабляется проходящее излучение. Хромофоры определяют глубину проникновения света в ткани и, что особенно важно, объем, в котором выделяется энергия.

Следует отметить, что на характер воздействия лазерного излучения на биологические ткани влияет длина волны, на которой лазер работает. Это происходит потому, что от длины волны сильно зависит поглощение излучения в различных компонентах тканей. Длина волны излучения является, таким образом, важным его параметром. В медицине используют лазерные аппараты, генерирующие излучение от ультрафиолетового (длина волны около 0,2 мкм) до дальнего инфракрасного (более 10 мкм), включая видимую часть спектра с длиной волны излучения (от 0,45 до 0,7 мкм).

Для иллюстрации на рис. 1 приведены зависимости поглощения лазерного излучения в воде и цельной крови от длины волны. Представлены длины волн излучения лазеров, на основе опыта работы с которыми написана настоящая статья.

Зависимость поглощения лазерного излучения в воде

Рис. 1. Зависимость поглощения лазерного излучения в воде (сплошные линии) и цельной крови (звездочки) от длины волны (а — от 0,6 до 10,6 мкм, б —от 0,7 до 1,1 мкм). По осям абсцисс — длина волны, мкм; по осям ординат — коэффициенты поглощения, см»1 (для воды), мм-1 (для крови).

Для зеленого излучения (0,53 мкм) поглощение возрастает в цельной крови и уменьшается в воде. Тот из хромофоров, который для этой длины волны ослабляет (поглощает) лазерный свет сильнее, и будет определять объем нагреваемой ткани (объем тепловыделения). Поэтому такой хромофор называют доминирующим хромофором. Например, для С02-лазера (10,6 мкм) доминирующим хромофором является вода. Коэффициент поглощения ца составляет около 830 см1 , что соответствует глубине проникновения света в ткани около 50 мкм (около 0,05 мм), т. е. нескольким (10—15) слоям клеток. Благодаря этому можно локализовать выделение энергии в очень маленьком объеме ткани и достичь начала абляции (эвапорации) ткани при малых уровнях мощности. Это хорошо согласуется с результатами экспериментов.

Для других важных для эндоскопической хирургии лазеров измеренные глубины поглощения света составляют: для лазера на иттрий-алюминиевом гранате (ИАГ), активированном неодимом (неодимовый ИАГ-лазер с длиной волны 1,06 мкм), — от 6 до 8 мм, для лазера на ИАГ, активированном гольмием (гольмиевый ИАГ-лазер с длиной волны 2,09 мкм), — 0,5 мм, для неодимового ИАГ-лазера с удвоением частоты (0,53 мкм, зеленый свет) — 0,4 мм, для диодных лазеров с длиной волны 0,81 мкм — от 4 до 6 мм, с длиной волны 0,97 мкм — от 1 до 2 мм.

Из приведенных сведений следует несколько важных для эндоскопической хирургии выводов:

  • Если необходимо нагреть (например, скоагулировать) большой объем ткани, то предпочтение следует отдать неодимовому ИАГ-лазеру (1,06 мкм) или диодному лазеру (0,81 мкм), поскольку объем нагреваемой ткани будет во много раз больше, чем при использовании С02-лазеров.
  • Если необходимо осуществить точную (прецизионную) резку тканей, то предпочтительно использовать С02-лазер. При применении такого лазера меньше термическая травма окружающих разрез тканей и, следовательно, в дальнейшем выше скорость заживления раны и меньше выраженность рубцевания тканей в зоне разреза.
  • Поскольку лазерная коагуляция имеет в основном тепловой характер (термическая коагуляция), больший объем нагреваемых лазером тканей обеспечивает возможность коагуляции более крупных сосудов. Таким образом, лазерное излучение, более глубоко приникающее в ткани, имеет более выраженный гемостатический потенциал. Например, неодимовый ИАГ-лазер может коагулировать кровеносные сосуды диаметром до 3—4 мм, в то время как С02-лазер надежно коагулирует сосуды диаметром не более 0,5 мм. Диодные лазеры (0,97 мкм), гольмиевые ИАГ-лазеры (2,09 мкм) и неодимовый ИАГ-лазер с удвоением частоты (0,532 мкм) занимают промежуточное положение между неодимовым ИАГ- лазером (1,06 мкм) и С02-лазером (10,6 мкм) по возможностям коагуляции и резки тканей. Эти лазеры не имеют ярко выраженного доминирующего хромофора. Точнее, они имеют по 2 хромофора, близких по поглощению для их длин волн генерации. Для диодных лазеров и гольмиевых ИАГ-лазеров хромофорами являются вода и кровь, а для неодимовых ИАГ-лазеров с удвоением частоты (зеленый лазер) — кровь и меланин. Какой из хромофоров будет доминирующим, часто определяется конкретной операционной ситуацией и зависит от степени крове- и водонаполнения, морфологической структуры, степени окраски тканей, неравномерности распределения молекул хромофора в среде и степени насыщенности ткани кислородом.
  • Для получения одинакового термического эффекта (например, эвапорации или коагуляции тканей) требуются примерно одинаковые затраты энергии на единицу объема тканей. Поэтому при использовании излучения, более глубоко проникающего в ткани, необходимы и большие абсолютные затраты энергии. Кроме того, возрастает опасность нежелательного воздействия на органы, находящиеся за зоной воздействия. При выборе типа лазера и его энергетических параметров (мощность, энергия) следует исходить из описанных выше особенностей. Именно поэтому лазерные хирургические системы с большим коагуляционным потенциалом всегда обладают большей мощностью. Так, уровни мощности хирургических систем с неодимовым ИАГ-лазером составляют 100 Вт и выше, в то время как с С02-лазером — около 20 Вт. Отметим также, что с учетом «эксплуатационного запаса» обычно выбирают еще более мощные системы, поскольку чем больше мощность (энергия) лазера, тем выше производительность операционного процесса (скорость резки, коагуляции, эвапорации).

Очень важно понимать, что повышение температуры собственно и определяет достигаемый термический, а следовательно, и хирургический (медицинский) эффект. Термические эффекты в биологических тканях соответствуют следующим диапазонам температур (в °С): отсутствие необратимых изменений 37—45 разделение слоев ткани (отек) 45—48 сваривание ткани, денатурация белка 45—60 коагуляция, некроз, обезвоживание 60—100 испарение тканевой воды 100 обугливание (выгорание водорода из углеводородов ткани) 150—300 горение и эвапорация ткани >300

Повышение температуры в локальном (ограниченном глубиной поглощения света) объеме при выполнении некоторых энергетических и временных условий приводит к безожоговому абляционному разрушению тканей. Например, для С02-лазеров плотность энергии должна быть более 4—5 Дж/см2, а время воздействия — менее 1 мс. В таких условиях воздействие лазера вызывает кипение перегретой жидкости (вода) в ограниченном объеме, образование высокого давления пара (превышает атмосферное давление в несколько раз) и выброс фрагментов ткани из зоны лазерного воздействия за счет перепада давления. Резка (абляция) ткани лазером, таким образом, представляет последовательную термическую деструкцию ткани при перемещении пучка света (с необходимыми параметрами) от одной точки ткани к другой.

Автор: Шулутко А. М., Овчинников А. А., Ясногородский О. О., Мотус И. Я.

Похожие медицинские статьи

Симптомы: , , ,

Лазерные эндохирургические операции

    Вы студент медик? Интерн? Детский врач? Добавьте наш сайт в социальные сети!

Запись "Лазерные эндохирургические операции" опубликована в рубрике Хирургия в Четверг, Ноябрь 22nd, 2012 в 10:57 дп. К записи добавлены такие Метки: , , ,

Оставьте комментарий

Для того, чтобы оставить комментарий, Вы должны зарегистрироваться ЗДЕСЬ

Детский врачДетврач.ком ® © 2011-2012-2013-2014-2015 Медицинский сайт для врачей педиатров, студентов, интернов и практикующих детских врачей из Украины, России!
Этот сайт будет полезен в помощь студентам медикам и интернам. На сайте Детский врач Вы сможете найти шпаргалки, медицинские статьи, лекции по педиатрии. Кроме этого мы размещаем конспекты занятий из медицинских ВУЗов, справочники болезней и синдромов, энциклопедии и книги по медицине. Пройдясь по разделам сайта Детский врач, Вы прочтете истории детских болезней, современные методы и приемы, применяемые при лечении детских болезней, описания синдромов заболеваний. Студенты медики обнаружат тесты на КРОК, которые сдают в медицинских университетах.
Много полезного материала могут прочесть и молодые мамы, которые задают очень много вопросов в комментариях к нашим медицинским статьям!
Сайт "Детский врач" - это сайт для студентов-медиков, интернов, педиатров, врачей и молодых мам! Заходите, читайте, спрашивайте!